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abstract
Designers need to learn programming to expand their exist-
ing toolset and  allow them to design for future applications 
of technology. However, the way in which programming is 
typically introduced using syntax based instruction has not 
proven to be an effective way for designers to learn. As visual 
thinkers, design students are more comfortable working in 
spatial rather than text-heavy environments. With this work, 
I aim to lower the barrier of entry to programming for de-
signers and visual thinkers. The investigation explores the 
design of a multidimensional visualization tool that introduces 
college-level design students to programming. This tool acts 
as a supplement to an introductory programming course for 
designers, and helps designers understand code by way of 
observation and interaction with visualizations of program-
ming constructs. 
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introduction
In a conversation between two people who share the same lan-
guage, the meaning behind what each person is saying is clear 
to the participants of the conversational exchange. This ease 
can be attributed to the similar way in which they might form a 
cognitive model of the topic of the conversation. In addition to 
a linguistic understanding, a basic contextual understanding of 
the conversation and the rules set therein by cultural and so-
cietal norms is required to successfully partake in meaningful 
conversation. It is not uncommon to talk about something and 
later allude to it by a different name, or to shift meanings of 
words with a shift in context.

Coding can also be thought of as a conversation between the 
programmer and the computer. In order to talk to the comput-
er, the programmer must use a programming language that 
the computer understands. This linguistic constraint poses a 
problem for people from vocations like design, where com-
puters are the primary tool of the trade but most people don’t 
know the programming language necessary to talk effectively 
to a computer. 

In this thesis, I work towards finding an answer to the ques-
tion “How can the design of multidimensional visualizations 
of programming constructs help designers understand pro-
gramming concepts in order to develop transferable skills for a 
range of programming languages and paradigms?”

For the purpose of this investigation, multidimensional visu-
alizations refer to interactive digital visualizations modeled in 
three dimensional space. I am focusing on novice program-
mers as the end user — that is, someone with little to no prior 
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experience with programming — enrolled in a graphic design 
program at the undergraduate level.  

From an industry perspective, there is a need for graphic de-
signers to learn programming in order to work efficiently in in-
terdisciplinary teams and interface with application developers. 

Designing includes tackling complex problems, which requires 
a clear and well thought out approach. Programming is a way 
of externalizing the programmer’s thought process. It makes 
the programmer consciously make decisions about individual 
components, and think about the relationships between them 
in a logical manner. 

Current attempts at lowering the barrier of entry to program-
ming for designers and other visual thinkers include visual 
programming languages and textual languages with a simpli-
fied syntax. The main downfall for these approaches is that the 
skillset they help their users build is not transferrable to other 
programming environments and paradigms.

To enable a deeper understanding of programming concepts 
that are applicable to any programming language and para-
digm, I visualize programming constructs for the learner. These 
constructs are curated based on versatility and applicability — 
basic concepts that represent programmatic thinking. The visu-
alizations are interactive, and certain aspects can be controlled 
by the user to provide a deeper understanding of concepts. 
Gaining a deeper understanding of programming concepts will 
aid them in creating programs. Using these programs, they can 
push the limits of what is possible with typical tools that they 
currently employ - sketches, Photoshop, InDesign and other 
point-and-click tools. 

The goal here is not to enable designers to take on the role of 
a professional application developer, but rather to enable the 
designer to create prototypes, to explain interactions, and to 
communicate effectively with application developers.
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justification

“… programming is the most powerful medium 
of developing the sophisticated and rigorous 
thinking needed for mathematics, for grammar, 
for physics, for statistics, and all the “hard” sub-
jects. Maybe I would even include philosophy 
and historical analysis. In short, I believe more 
than ever that programming should be a key 
part of the intellectual development of people 
growing up.”

— Papert, 2004

programming is designing

The process of programming involves high level thinking about 
systems, and how systems interact with each other — what 
part of which system might interact with and thus affect a part 
of another system (Wing, 2006). This kind of thinking is similar 
to how designers might approach a highly complex system, 
breaking it down into subsystems, and fleshing out the behav-
iors for individual components which results in various interac-
tions between these. 

A rigorous introduction to programming is necessary for every-
body, including designers, at this time (Resnick, 2013; Papert, 
2004). Programming is a reflection of your thought process. 
It makes the programmer consciously make decisions about 
individual components, and think about the relationships be-
tween them. It also makes the programmer think logically — is 
this behavior flowing into the next, or is it too abrupt? 
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“ … every programming language is a thought 
tool. Programming languages allows us to 
externalize in the form of computer programs 
our thoughts about symbolic behaviors. Since 
one writes computer applications in program-
ming languages, a programming language is 
a thought tool for building thought tools, i.e., a 
thought tool for externalizing thought.”

— Abbott, 2006

designing is programming

A major part of the thought process that goes behind design-
ing a system in the graphic design vocation is computational 
in nature. Designers take on complex problems to tackle. These 
problems and / or the systems they’re designing for can often 
be broken down into smaller, simpler pieces. The designer can 
then tackle these small problems individually. As an example, 
let’s look at the visual layout of a typical book cover.

The visual layout of this book cover can be seen as the arrange-
ment of individual elements like the book title, sub-title, the 
author, and optionally some text about the book or the author 
(like recommendations). When a designer decides the layout 
for a book cover, she is assigning values to certain character-
istics of these individual elements, like the position, typeface, 

fig 1. 
The layout of any book 

can be broken down into 
individual components
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type size, color etc. While making these choices, the design-
er might not conscientiously think about the act as assigning 
values to variables, but the approach is akin to thinking about 
objects and their fields when approaching programming with 
the Object Oriented Programming (OOP) paradigm. Variations 
in the values of these fields (variables) would render various 
book covers with different designs. 

For a more formal look at a programmatic approach to graph-
ic design practice, we can look to Karl Gerstner and his book 
Designing Programmes (1967). Even though computers were 
in their infancy in Gerstner’s time, his approach to the design 
programs that he implements is very similar to that of comput-
ers. Gerstner’s idea of a design program is a rule set or system 
defined by the designer that can help shape all aesthetic deci-
sions for a particular design product. This approach is respon-
sive and often unique to the specific problem. For each case, 
a program is different but in all cases, it comes from defining 
the problem and then enables the designer to systematically 
try to solve that problem. With Gerstner’s pursuits as a graphic 
designer, we can see his programmatic approach manifest it-
self in systematic ways. An example would be the logo design 
for Holzäpfel, which functions as a grid system, a font, as well 
as a symbol for the company. The design program is the basic 

fig 2. 
Page spread from Designing 
Programmes showing the 
Holzäpfel logo situated in 
different contexts (image 
source: runemadsen.com)
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geometry of the logo, which dynamically changes to fit differ-
ent design products. 

As another example, consider the design of an issue of Capital 
magazine that was commissioned to Gerstner, for which he 
designed a well thought out grid system. Grids can turn de-
sign into a simple act of placement of elements into a series 
of columns. While this can provide the consistency, grids can 
be a trap for designers; creating uninspired, homogenous lay-
outs. This is especially the case with simple grids. For Capital, 
Gerstner developed a complex grid which was flexible and al-
lowed rapid, creative and consistent layouts. As a grid grows in 
complexity, it provides “a maximum number of constants with 
the greatest possible variability” (Gerstner, 2001).

The grid looks incredibly complex at first, but upon examina-
tion, shows itself as a number of grids overlaid upon each oth-
er. While each grid overlay was often used separate, they were 
designed so if columns were mixed together, they would still 
maintain harmony between each other. This way the maga-
zine’s layout is consistent from page to page and between the 
different grid versions, separate or combined.

fig 3. 
The grid system developed 

by Gerstner for Capital 
magazine (image source: 

gridsetapp.com)
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This approach clearly shows how computational thinking can, 
and does, manifest itself in visual thinking, which is a power-
ful way of understanding systems and relations (Stiny, 2002; 
Victor, 2012).

visual-spatial thinking

The kind of computational thinking that is required to create 
designs like the ones shown in the previous section is rooted 
in the ability to “see” what one is doing and making. George 
Stiny defines “see”ing as looking past the superficiality of a 
visual system, and to understand what is going on behind the 
system to make it work. He calls this visual calculating, and ar-
gues that this is an important aspect of reasoning itself (Stiny, 
2002). The Capital grid that Gerstner designed (fig. 4) is a per-
fect example of visual calculating. The grid is a complex system 
of individual grids overlaid over one another, and the designer 
can make use of it by being able to see past the apparent com-
plexity of the grid and visually calculate which grid lines she 

fig 4. 
Examples of the Capital grid 
being utilized for varying 
column layouts (image 
source: textwrap.net)
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needs to use for a particular layout. 

A designer, if faced with a design that doesn’t “look” or “feel” 
right, would not turn to mathematical expressions for the po-
sitioning or the spacing of elements — she would “see” the 
design, and make changes visually.

Design students have a visual-spatial thinking aptitude (Sutton, 
Williams, 2010). The ability to think spatially is a positive influ-
ence to learning programming (Webb, Noreen M., 1985; Jones, 
Sue and Barnett, 2008). However, even though designers are 
proficient with spatial thinking in both two- and three-dimen-
sional environments, they are not comfortable with working 
in a text-heavy programming environment (Maleki, Woodbury, 
2015).

Existing popular Visual Programming Languages (VPLs) make 
use of two dimensional spatiality to try and connect the user’s 
mental model to the program’s visualization. However, the hu-
man brain is trained to deal with the three-dimensionality of 
the outside world, both for perceiving things as well as manip-
ulating them. The mental model of a program that an experi-
enced programmer creates is often a three-dimensional one. 
Representing the program spatially in three dimensions sup-
ports this mental model more profoundly. (Reeth, Flerackers, 
1993). 

Three dimensional space to represent a program would also 
allow for the use of simple visualizations that appear unique 
from different perspectives. These can be viewed from differ-
ent angles to get different spatial arrangements, that would 
allow for a deeper understanding of a concept. Simple two di-
mensional visualizations can be layered to create a three di-
mensional form that contains much more information than can 
be seen in just two dimensions. 

Three dimensional space also provides a good opportunity to 
mix two- and three-dimensional layers — for example, some 
information may be represented on a fixed 2-D layer while 
a 3-D model responds to the user’s interactions with the 2-D 
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space as well as direct manipulation of the 3-D model. 

coding as a tool

“I see coding (computer programming) as an 
extension of writing. The ability to code allows 
you to ‘write’ new types of things – interactive 
stories, games, animations, and simulations. 
And, as with traditional writing, there are pow-
erful reasons for everyone to learn to code … 
they are also learning strategies for solving 
problems, designing projects, and communi-
cating ideas. These skills are useful not just for 
computer scientists but for everyone, regardless 
of age, background, interests, or occupation.”

— Resnick, 2013

The term “computer” implies that a computer is a tool for cal-
culations. While it is true that computers are exceedingly good 
at doing many mathematical calculations and computations in 
a very short period of time, the scope of the uses of a computer 
has grown a lot in the past twenty years or so. Computers are 
more than just glorified calculators now. Computers are media 
machines. Computers are tools to enhance thought. Computers 
are imagination engines. Computers are design machines.

Code defines how the computer performs, and what it does. 
Programming is a way to control how a computer behaves, and 
make it do what the user wants it to do. Learning to code opens 
up opportunities for new types of explorations, and makes it 
possible to step out of the bounds of point and click software.

Programming enables the designer. It is another way to com-
municate, to create things. It enables the designer to express 
herself creatively. It also takes away the dependence on anoth-
er person — it gives the designer the ability to express through 
creating. Since programming involves the creation of exter-
nal representations of problem-solving processes, it provides 
opportunities for the designer to reflect on her own thinking 
(Resnick, 2009).
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issues
textual programming languages

Many designers feel that text based programming languages 
seem too intimidating to understand. This does not come as a 
surprise — designers are used to learning through discovery. 
They are used to playing with colors, form, and arriving at a 
feasible solution by playing with their tools. However, with pro-
gramming (through writing code), one needs a minimum level 
of knowledge, experience, and confidence, to be able to dive in 
and play with code. This limits what the designer can do with 
a limited background knowledge and a non-inclination to dive 
into something she has preconceived notions about.

“If people firmly believe that they cannot do 
math, they will usually succeed in preventing 
themselves from doing whatever they recognize 
as math.”

— Papert, 1980

Previous life experiences have set up a wall between many de-
signers and programming and they automatically veer away 
from it because of the expectation that programming is hard. 
Some places have mathematics courses as a prerequisite to 
take a programming course — again establishing that to write 
code you need to be good at math. For example a minor in 
Computer Science at NC State requires a college level calcu-
lus course as a prerequisite, which is pretty advanced mathe-
matics. However, to create basic programs for prototyping or 
testing an interaction, one does not need a mathematical back-
ground — one needs to think computationally.
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As the teaching assistant for an introductory programming 
course for designers, I have found that designers excel at de-
fining a problem succinctly and ideating, which sets them up 
for computational thinking. Defining the problem is the first 
step towards a solution, and defines the approach to be tak-
en towards it (Gerstner, 1967). The stumbling block for most 
students was learning the vocabulary and applying that to 
the syntax defined by the language of choice. As compared to 
machine level (binary) and assembly languages, the syntactic 
nature of high level programming languages resembles that 
of the English language much more. A step in the direction of 
simplifying the syntax is using Natural Language Programming 
(NLP), which enables programming using statements formed 
from natural English word forms and sentences. However, this 
does not empower the thinking process that goes behind cre-
ating a program.

visual programming languages

The spatial thinking aptitude that designers exhibit (Sutton, 
Williams, 2010) makes a visual approach lucrative in order to 
introduce them to programming and writing code. Visual pro-
gramming tools aim to expose a difficult and complex activity 
to a new audience. Many of the core concepts in modern pro-
gramming can be expressed visually, and have immediately 
accessible visual analogues. When a knowledgeable program-
mer imagines implementing a loop or an event, they can draw 
upon a mental visual representation. When they describe these 
concepts, they move their hands, they gesture, they draw. 
Even so, to professional programmers, many of these visual 
programming tools seem to be a limited shortcut, that are not 
capable of the full range of expression that textual program-
ming provides and are seen only as intermediary tools on the 
way to learning how to “actually program”. This way of thinking 
can hold back new and powerful ways of thinking computa-
tionally. Visual programming is inherently attractive to people 
who think visually, but it should be attractive to anyone who 
programs and can “see”.

Visual programming languages such as Scratch and 
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Grasshopper have really lowered the barrier of entry to pro-
gramming for novice programmers. The visual approach lets 
a new user skip the tiresome process of trying to learn new 
textual syntax for a programming language. Languages like 
Scratch are browser based, and they reduce the setup time im-
mensely. A new user can just open the website and start creat-
ing programs — as opposed to a typical development environ-
ment, which might take a novice hours to set up, and even then 
things might be unknowingly set up improperly. Barriers like 
these have been well addressed by most VPLs, and in a design 
context, lets the designer focus on designing the system rather 
than micro manage each individual module.

Another major success of VPLs is the transformation of writ-
ing code into the act of play. The very quick iteration time and 
the ability to quickly debug various states of the program vi-
sually, almost immediately, is a strong opportunity that can be 
pushed further. This plays well with designers learning through 
discovery. 

Indeed there is a vast amount of work on visual, and intelligent 
debugging tools. This is important for learning, but remains im-
portant for advanced developers as well. Code always needs to 
be debugged and inspected — when the code is simple, debug-
ging can be a teaching tool, and especially when it becomes 
complex, debugging is necessary as an analysis and parsing 
technique.

However, existing VPLs and programming tools don’t build 
transferable skills in the user. Since VPLs are primarily a pro-
gramming language, the main focus is on making it easy for a 
new user to write source code rather than learn computational 
thinking or programming concepts. For a tool that is being used 
in such a developmental stage of a user’s learning journey, it is 
very important for them to learn the concepts, understand the 
nature and working of programming constructs as well. This 
is a transferrable skill that can be applied to any programming 
language in many paradigms. In the absence of such develop-
ment, if the user wants to use another programming language 
for a project, they might run into a wall and not know how to 
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approach resolving a bug in the code.

“It is important to realize that a programming 
language is itself a computer application. As a 
computer application, it implements a concep-
tual model; it allows its users to express their 
thoughts in certain limited ways, namely in 
terms of the constructs defined by the program-
ming language. But all modern programming 
languages are also conceptually extensible. 
Using a programming language one can define 
a collection of concepts and then use those con-
cepts to build other concepts.”

— Abbott, 2006

Historically, there are few languages that have retained their 
user base or interoperability, and even less so in the visual pro-
gramming space (tiobe.com, 2016). This magnifies the issue of 
a lack of transferrable skills being taught to the user. 

For example, many tools make it very easy for their users to 
perform certain tasks by including a robust library of functions. 
Using these simple functions, a user may be able to perform 
otherwise computationally complex tasks. However, since 
these libraries and functions are generally proprietary to the 
programming language at hand, the user does not learn the 
concept that is being applied to perform said function, and this 
inhibits the user from performing the same action using an-
other programming language which does not have a similar 
function in its library of functions. 

An issue specific to data flow languages is the absence of 
time in the visualization of transient programming constructs. 
In many programming environments the state of an object 
throughout the computation changes, but this might not be re-
flected in the visual feedback to the user. Exposing state over 
time is a powerful way to teach many computational mental 
models and illustrate what a computation is actually doing, as 
opposed to just its output (Victor, 2012). 
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In this thesis, I explore how interactive three-dimensional 
transient visualizations of programming constructs may help 
in understanding the concepts behind programming in order 
to implement them in various programming paradigms and 
languages. 

other issues

A general issue with learning any new conceptually challeng-
ing task or computer program is the unintentional misuse of 
the kinds of resources that can be found on the internet on on-
line forums. Forums like stackoverflow.com have popped up to 
help answer questions related to programming. There are many 
programming language specific sub-forums as well. Users on 
these forums are usually very helpful, and in many cases share 
their own scripts as answers. In some instances, the learner 
might use the exact program snippets that are posted without 
any modification, or thought about the logic behind the code 
snippet. For instance, when asked about their experiences with 
writing code and learning concepts, a design student from the 
programming class said:

“ … when I Googled that, many different lines 
of code appeared, and I had no idea which one 
was the best until I tried them all and found one 
that worked. Why it worked and others didn’t, I 
have no idea.”

I hypothesize that this behavior is due to a lack of foundational 
concepts on the part of the borrower of code. The intention of 
sharing and downloading this code was originally to learn, but 
a lack of foundational knowledge has lead to its use without 
absorbing the core of its function and mechanics. A new pro-
gramming tool will not fix this completely, but I will take a stab 
at addressing this issue by building foundational knowledge 
required to create programs rather than write source code in a 
new programming language.
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goals and limitations
An overarching goal for my endeavours is encouraging people 
to think computationally. For this thesis, I focus my efforts on 
graphic designers, with the aim of lowering the barrier of entry 
for designers wanting to learn to code through helping them 
understand programming through computational thinking, 
rather than writing source code in a new language. 

Many designers exhibit a fear of programming due to precon-
ceived notions and expectations from past experiences. By 
breaking down seemingly complex concepts visually and mak-
ing them easier to digest for designers, I hope to remove, or at 
least lower, their fear of programming.

With these visualizations, I want to enable the designer to go 
from her computational thought process to the output that 
she desires. This will enable the designer to create interactive 
mockups of her designs and to prototype her work. As opposed 
to sending static mockups and instructions, sharing interactive 
mockups and prototypes is a much more effective way of com-
municating with application developers, who usually don’t 
have an educational background in design. This is because with 
these prototypes one can see the designer’s intended feel of 
the interactions and animations. This would enable designer to 
work efficiently in interdisciplinary teams.

A goal of this thesis document itself is to document my process 
through the year in detail, because I touch on several different 
opportunities but limited by the time frame of the project lead 
along one. For future work, I would like to refer back to my pro-
cess and pick up on one of these directions, and this document 
will help me, and hopefully others in the field, with this task.
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Another factor that must be brought up is my interaction with 
my peers influencing my investigations. While talking with my 
peers who want(ed) to learn programming, I came across the 
reasons behind their apprehension of programming and cod-
ing, as well as their approach to thinking. I have used several 
facts like these to guide my exploration. I also asked my peers 
and design students in the programming class for feedback on 
some of my explorations and studies and used the feedback 
to decide on directions. While my usage of facts and feedback 
from people in the user group I’m designing for can be seen 
as a good thing, it can also be considered a limiting factor be-
cause I did not conduct any formal tests with a larger, unbiased 
sample size. However, my explorations still hold for the con-
straints defined in the document.
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existing conditions 
and precedents
programming languages

When electronic computers were first created, they had to be 
instructed to perform very specific functions using machine 
code. Machine code could only be written in binary, and hence 
was not readable by humans without lots of calculations. 
Machine language was also hardware specific, because each 
hardware architecture came with its own instruction set.

To solve the readability issue, the assembler was created, which 
could take code written in an assembly language and convert 
it to machine code. Assembly language used some English 
words to describe some instructions as mnemonics. However, 
it was still almost a one-to-one translation of machine code, 
and provided no new ways of thinking. 

To make the process of writing programs more efficient and 
intuitive for the programmer, John Backus at IBM invented 
the first implementable high level programming language, 
FORTRAN. High level languages usually implement language 
abstractions like complex control structures, high level function 
declarations and invocations, high level abstract data types like 
structures, arrays, classes etc.

High level programming languages opened up a new way of 
thinking about programming — instead of being limited to giv-
ing instructions to the machine, the programmer could now 
think in a similar fashion to other cognitive tasks. This also gave 
birth to various programming paradigms, which professed one 
kind of thinking over another. For instance, functional pro-
gramming revolved around the notion of functions which dif-
ferent objects could access, and Object Oriented Programming 
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(OOP) focused on the definitions of classes and their objects 
with their own set of fields (variables) and methods (functions). 
These were all different kinds of abstractions building on previ-
ous layers (Wing, 2010), but served as more powerful ways of 
thinking about these concepts than giving step by step instruc-
tions to the machine (Victor, 2013). 

programming tools

As computer technology kept improving and writing source 
code in high level languages became more common, we start-
ed seeing new tools to program with in the same language. 
Since source code is simply information, it can be written with 
any tool on a computer where you can create content. Text ed-
itors, Integrated Development Environments (IDEs), VPLs are 
all examples of different tools that one may use to write source 
code to run a particular program. 

Text editors are a generic tool to write and format text with, 
and are not specifically designed for the purpose of writing 
code. However, a programmer could use a text editor to write 
code in any language she wishes. The text editor does not pro-
vide any visual cues for individual elements or the structure 
of the program. The only visuality that a text editor provides is 
the ability to imagine the source code as a block of code rather 
than single lines of text.

A simple text editor lacks the visual nature of type that an 
Integrated Development Environment (IDE) introduces with fea-
tures like syntax highlighting and auto indenting. IDEs render 
different kinds of keywords using different colors, text weights 
and text styles. Some IDEs feature code documentation built-
in to the code editor, where a user may highlight a keyword to 
get information about it from the official documentation. IDEs 
usually have a debugger in the package as well, so in case of a 
code error there is feedback for the programmer to assess and 
take corrective actions.
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Some IDEs that are built specifically for a single language make 
use of the nature of the programming paradigm that the lan-
guage is based upon. For example, Smalltalk (1962) was one of 
the first languages based on the Object Oriented Programming 
(OOP) paradigm. Its development environment, the Smalltalk 
Browser, showed a powerful way of thinking about code snip-
pets as objects. All interaction between these objects happened 
by the exchange of messages between them. The Smalltalk 
browser showed a multi panel window, with different panels 

fig 5. 
The Processing IDE showing 
syntax highlighting, auto 
indenting, and error 
detection. The syntax 
highlighting and indenting 
help with visually 
structuring the code 
and the error detection 
draws attention to the 
error code and line

fig 6. 
The Smalltalk browser is 
a series of four horizontal 
panes positioned above an 
editing pane, the selection 
panes allow the user to 
specify first a category and 
then a class, and further 
narrow down the selection. 
The selected code is opened 
in the editing pane for 
inspection or modification. 
(image source: gioorgi.com)
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denoting different information, like a list of objects and its chil-
dren. Each object might have its own methods and fields which 
could be accessed by these panels, and the code seen in the 
bottom panel. This clearly denoted that everything was part of 
a bigger structure, which could be seen through the arrange-
ment of content in these panels.

Realizing the potential of computational thinking, languag-
es were also developed for an educational environment. For 
instance, Logo was developed by Seymour Papert to intro-
duce computers to children by bringing the computers into a 
child’s physical world — her playground. In so doing, Papert 
brought children to “Mathland”, where children could learn 
mathematical concepts more easily and intuitively than in a 
math class. The difference in instruction and knowledge acqui-
sition came from the way the information was absorbed by the 
learner — instead of reading from textbooks, the learner was 
now controlling a robot turtle, creating shapes, and learning 
mathematical concepts from these interactions. There was a 
strong element of play involved, and a moment of reflection 
on the kinds of shapes resulting from different combinations 
of commands.

fig 7. 
The Logo turtle was a 

physical robot that would 
be controlled with code to 

draw shapes with a pen 
using simple commands 

(image source: bfoit.com)
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The Logo language had a simple vocabulary, with commands 
like FORWARD, RIGHT, BACKWARD etc. The focus was on let-
ting the child learn mathematical concepts via turtle geometry 
(the geometry formed by the turtle) and body-centered-geom-
etry (where the child enacts the commands and learns geomet-
rical concepts through the act of moving their body).

Taking this idea of introducing children to programming fur-
ther, Steve Ocko developed a system that combined the Logo 
programming language with LEGO building blocks. Instead of 
controlling a Logo turtle, the Logo program now affected blocks 
/ structures made out of LEGO blocks. With LEGO Mindstorms, 
the programming interface became the building blocks them-
selves, and encouraged play in creating new programs to per-
form computations. 

Visualizing code with more than only text, and making use 
of visuals and spatial structuring allows us to think about 
the code snippets and structures in a holistic manner. Visual 
Programming Languages (VPLs) open up a new kind of think-
ing about code and new avenues for learning. One of the most 
popular approaches is to use a data flow based visualization 
which allows the user to see the path that the data takes from 
input to final output. 

VPLs typically have a low barrier of entry for novice program-
mers. With the visual layout, it is much easier to comprehend 
program structures than only with text indentation in IDEs. 
Some VPLs like Scratch use colored blocks instead of text that 
snap into each other. This has the advantage of eliminating the 
possibility of creating syntax errors due to the connection con-
straints of these blocks (only some blocks will snap together, 
others would not). However, this also limits the applicability 
and versatility of the language by placing the constraints in 
place. 

Another feature that makes Scratch very easy to use for nov-
ice users is the display of all available functions in one panel, 
accessible under sections. The user does not have to learn a 
new vocabulary to learn coding with Scratch, which reduces 
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the barrier of entry immensely. However, this takes away from 
helping build a transferable understanding of concepts, since 
the user can simply drag-and-drop function blocks into the 
making area without realizing the programming constructs un-
derlying that function. A happy medium for a learning environ-
ment would be to have a code editor, with the ability to refer to 
a library of available constructs, reminding her of the concept 
of the constructs rather than just the name.

fig 8. 
The Scratch programming 
environment uses colored 

blocks that the user can 
drag-and-drop to write 

code. (image source: 
llk.media.mit.edu)
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theoretical and 
conceptual 
frameworks
kolb’s experiential learning theory

The framework for my investigation is primarily based upon 
the experiential learning theory as proposed by Kolb in 1984. 

David A. Kolb created his model out of four elements: concrete 
experience, observation and reflection, the formation of ab-
stract concepts and testing in new situations. He represented 
these in a cyclical form, and argued that the learning cycle can 
begin at any one of the four points — and that it should really 
be approached as a continuous spiral.

fig 9. 
Kolb’s experiential 
learning cycle
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gardner’s theory of multiple intelligences

Howard Gardner’s theory of multiple intelligences influenced 
my design decisions as well. He questions the idea that intel-
ligence is a single entity that is affected by a single factor. He 
proposed that people possess different learning modalities, 
that he called intelligences. The list of intelligences he initially 
formulated is shown below.

Linguistic intelligence involves sensitivity to spoken and writ-
ten language, the ability to learn languages, and the capacity to 
use language to accomplish certain goals.

Logical-mathematical intelligence consists of the capacity 
to analyze problems logically, carry out mathematical opera-
tions, and investigate issues scientifically. In Howard Gardner’s 
words, it entails the ability to detect patterns, reason deduc-
tively and think logically. 

Musical intelligence involves skill in the performance, compo-
sition, and appreciation of musical patterns. 

Bodily-kinesthetic intelligence entails the potential of using 
one’s whole body or parts of the body to solve problems. It is 
the ability to use mental abilities to coordinate bodily move-
ments. Howard Gardner sees mental and physical activity as 
related.

Visual-spatial intelligence involves the potential to recognize 
and use the patterns in spatial arrangements.

Interpersonal intelligence is concerned with the capacity to 
understand the intentions, motivations and desires of other 
people. 

Intrapersonal intelligence entails the capacity to understand 
oneself, to appreciate one’s feelings, fears and motivations.

An effective learning environment would tap into each of these 
intelligences. However, people also have preferences for differ-
ent intelligences, and a learning environment that focuses on 
these intelligences helps them learn more efficiently. Traditional 
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school curricula focus on and reward children with linguistic 
and logical-mathematical intelligences, and most courses are 
designed to address these intelligences. However, designers 
are primarily visual-spatial thinkers and these approaches to 
learning are not as effective for them as for others.

the process of programming

Now is a good time to define and differentiate between the fol-
lowing seemingly interchangeable terms that are used in this 
document: computational thinking, (computer) programming, 
coding, and computation.

Computational thinking involves identifying a problem, and 
creating a solution that is appropriate for the constraints set in 
the system that the problem exists in. This approach to prob-
lem solving is something that can be applied to any vocational 
field, as well as daily life. Hence, computational thinking is a 
fundamental skill required by everyone, not a rote skill. It is 
conceptual, and not about programming a computer — it is 
a way that humans, not computers, think (Wing, 2006; Wing, 
2010).

Programming is computational thinking applied to the system 
of a computer. So, instead of finding completely open ended 
solutions for a problem, the solutions arrived at via program-
ming are specific to be applied to and interpreted by a comput-
er. This is also called algorithmic thinking, where one devises 
an algorithm that can be written in a programming language 
and a computer can understand. 

Coding is writing source code for a computer program to run. 
In other words, it is the act of translating the devised algorithm 
or program to be written in a programming language that the 
programmer chooses, so that the computer may understand 
the program and algorithm.

For this thesis, computation refers to the act of executing the 
source code. The scope of a computation is specific to a line of 
the source code that is executed. That is, the computer com-
putes (or performs computation) every time it executes a line 
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from the source code that is run by a programmer. Computation 
is usually left to the computer to figure out on its own, since 
higher levels of abstraction like high level programming lan-
guages exist, that let programmers think more holistically. 

Through observation and personal experience, I suggest that 
writing code is part of a cyclical process, and can be represent-
ed by the following diagram.

I divide the full process into the four sections as shown in the 
diagram. In the explanation below, I also demonstrate how 
these sections might relate to thinking through an implemen-
tation of a simple action like clicking a button. 

1. Computational thinking. The first stage comprises of high 
level thinking, where the programmer is thinking of ap-
proaches to the program and designing the system. In this 
stage the programmer does not interact with the program-
ming environment at all. This is the stage when the designer 
thinks about how she would solve the problem herself. The 
amount of time spent on this stage will depend upon the 
programmer’s experience with thinking computationally. 
 
For instance, designers are efficient with this stage because 
they are used to mapping out systems of behaviors with in-
teractions like “when the user clicks this button, the button 
will change its color to a lighter shade”. 

fig 10. 
The programming 

process, a framework 
serving as the basis of my 

investigative direction
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2. Programming. Once she has decided on the approach, the 
programmer then translates it to algorithms using program-
ming constructs. This stage does not require any knowledge 
of the specific syntax of the programming language. This is 
what differentiates “programming” from “coding”. In this 
stage the programmer may make use of cognitive tools like 
concept mapping to map or sketch out the program logic 
and structure, but usually does not interact with the pro-
gramming environment. She might look at documentation 
of approaches specific to the programming paradigm that 
her chosen language is based upon. This is where the pro-
grammer tries to figure out how the computer may (think 
about and) solve the problem at hand. The amount of time 
that the programmer spends on this stage will depend on her 
experience with programming systems using a paradigm.  
 
In this stage the designer might have to start thinking about 
systems and how to implement them. “I can create a class 
called button, and then create instances of this class. This 
class will have properties of the buttons, like its color, size, 
and position, and will have methods that define its behav-
iors. So I’ll define a method that will define its response 
when the mouse clicks this element”.

3. Coding. In the next stage of coding the program, the pro-
grammer translates the algorithm to the programming lan-
guage that she is using. This stage requires an understanding 
of the syntactical aspects of the language. This is where the 
programmer interacts directly with the computer or the ma-
chine, and instructs it to perform steps that would solve the 
problem at hand. The time that the programmer spends on 
this stage will depend on her proficiency and experience with 
writing source code in the chosen programming language.  
 
In this stage, the designer would start describing the interac-
tions in the programming language, like shown in the code 
sample.                                                                                                                                                                   
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4. Computation. The final stage happens behind the scenes, 
when the successfully compiled source code that the pro-
grammer wrote gets assembled and executed by the ma-
chine, and shows the output on the screen. The programmer 
does not get involved in this process at all — in this stage 
the computer’s processing units take the user’s source code 
and try to understand what the programmer is saying. The 
amount of time this stage takes depends upon the process-
ing power of the computer. 

The aim of a designer is to make the computation (which is the 
final stage) happen. To get there from the concept developed 
from computational thinking, the designer needs to know how 
to translate it to source code that can be read by the compil-
er of the language on the machine. This is where the discon-
nect exists for designers — they are good at conceptualizing 
and thinking computationally, but from observing students I 
found out that one of the biggest issues they were facing was 
to translate their thought process to fit the programming para-
digm followed by the language, and to write the lines of code 
using the correct syntax in that language.

I have hence designed my project around trying to bridge this 
gap and disconnect in the process, situated in a learning con-
text that I describe in the next section.

if (mouseX>position.x && mouseX<(position.x+_width)) 

{ 

 if (mouseY>position.y && mouseY<(position.y+_height))

 { 

  if (mouseClicked) 

  { 

   brightness += 30; 

   colorMode(HSB, 360, 100, 100); 

	 	 	 fill(hue,	brightness,	saturation); 

  } 

 } 

}
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learning context
The learning context that I designed my system of visualiza-
tions for is a classroom curriculum of an introductory program-
ming course. In the classroom, the teacher introduces the stu-
dents to different topics in programming, spending some time 
on various programming constructs. After a concept has been 
introduced to the students, they may use the tool during the 
instruction or after the class is over. These concepts are intro-
duced in increasing level of difficulty of comprehension, and 
are pertinently scaffolded to make sure that the transition from 
topic to topic is gradual. 

The tool visualizes the programming construct in three dimen-
sional space. The student can interact with it to gain a better un-
derstanding of the underlying concepts of the construct. Using 
the visualization tool, she would enter Kolb’s experiential learn-
ing cycle at the “abstract conceptualization” phase, where the 
tool visualizes a programming construct for the student to go 
through. The visual-spatial nature of the visualization helps the 
design student understand the programming construct be-
cause of her visual learning style preference. 

The interactions in this tool allow her to play around with the 
visualization. While exploring the interactions, the student en-
ters the “active experimentation” phase in the learning cycle, 
and engages her bodily / kinesthetic intelligence as well. 

As the student moves the model around in three dimension-
al space, views the constructs from different angles and per-
spectives, and understands how the data flows in the program, 
she develops a newer understanding of the concept. These 
two steps of understanding and playing go on simultaneously 
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throughout the duration of usage of the tool.

Once the student feels that she has a good grasp over the con-
cepts behind the construct, she can then try writing out code 
without the help of the visualizations. By doing this the student 
gains “concrete experience” in the learning cycle. This happens 
in the classroom environment, and is not part of the designed 
system.

Once the code is written, the student can then test the code for 
compilation errors. If any, she may debug the code and enter 
the debug loop, where she shuttles between “concrete experi-
ence” and “reflective observation” until the code is debugged 
and runs to give the output of the program. She observes the 
output on the screen. Here, the student looks back and reflects 
upon her approach. In case the output is as expected, then the 
student moves on to the next concept. Otherwise, the student 
may either choose to go through the cycle again, to try out 
other things in the “active experimentation” phase to try to un-
derstand things differently, or to change their approach (visual/
visual or visual/numeric) and try with that approach.

Relating these steps back to the stages of writing a code, we 
can see that computational thinking happens throughout the 
usage of the tool. At any given point in time, the student has to 
think about the larger system and how the smaller components 

fig 11. 
The cyclical nature 

of learning between 
conceptualization and 

experimentation
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relate back to the whole. 

The visualizations of the programming constructs help the stu-
dent start with the programming stage of the programming 
process in the “abstract conceptualization” phase. The visual-
izations help her see the concepts behind the constructs, en-
gaging her visual-spatial intelligence. She can then play around 
in the “active experimentation” phase, which also engages her 
kinesthetic intelligence in addition to her visual-spatial intelli-
gence. Until the student gets the concept, she stays in the pro-
gramming phase in the cycle between conceptualization and 
experimentation. 

Next as the student gradually moves from “active experimen-
tation” to “concrete experience” on Kolb’s learning cycle, she 
moves from the programming to the coding stage in the pro-
gramming cycle. This engages her linguistic intelligence as she 
thinks about the structure of the code as well.

Once the code is written, it is checked for errors and run by the 
computer. This is the computation phase of the programming 
cycle and takes place between Kolb’s stages of “concrete expe-
rience” and “reflective observation”.

During the “reflective observation” phase, the student engages 

fig 12. 
The correlation between the 
steps in the programming 
cycle, the kind of thinking, 
and the stages in the 
experiential learning cycle
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in computational thinking again as she thinks about her ap-
proach, the feedback from the output, and how that feedback 
might affect her approach the next time she attempts some-
thing similar. This engages her logical-mathematical intelli-
gence. Here, the student is learning from past experience — 
what worked, what didn’t work, and what could have been 
different to yield a better result.

These changes from computational thinking to programming 
to coding to computation and back to computational thinking 
are gradual, with some overlap between them in order to me-
diate a smoother transition between phases. The issue with ex-
isting programming languages, whether text based or visual 
languages, is that they do not help the student with the ab-
stract conceptualization. The abstraction is left to the program-
mer, and it becomes hard for students without a background in 
computation to visualize these abstract concepts.
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definitions of 
programming terms 
and concepts 
programming construct

A programming construct is a part of a program that may be 
formed from one or more lexical tokens in accordance with the 
rules of a programming language. A programming construct is 
also called a control structure. 

variable

A variable is an entity of a program that functions like a vari-
able in mathematics. In mathematics, a variable is an entity 
that can assume any value within the domain that the variable 
is defined in, and it is the same in programming as well. 

data types

The domain that a variable is defined in can be several different 
types of data — integers, floating point numbers, text, boolean 
logic variables etc. These different domains are called the data 
type of that variable.

code block, procedural abstraction

A code block is a procedural abstraction where a sequence of 
procedures, denoted by lines of code in the source code, are 
treated like a single procedure. A code block is usually enclosed 
within braces {}. 

infinite loop

A simple control structure that repeats the statements within 
its code block, infinitely.
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conditional statement ( if() )

A conditional statement executes a code block after checking 
a condition. This can be combined with an else{} statement to 
define what happens only if the condition for the if() statement 
is not met. 

conditional loop ( for() )

The for(), while(), and do{}while() loops can be thought of as 
being conditional loops. This is because they function like a 
combination of an infinite loop and a conditional statement — 
while a condition is met, treat the code block as an infinite loop, 
but once the condition evaluates to false, skip the code block. 
The for() loop is central to many important algorithms, and can 
be used for tasks like accessing elements from a structured list 
or an array.

nesting

Nesting is the idea of a code block living inside another code 
block, for instance:
 for (int i = 0; i < 10; i++){

	 	 statement1;

  if (i == 5) {

	 	 	 statement2;

  } 

 }

Here the if() code block is nested within the for() loop’s code 
block.

function

A function in a programming language is like a procedural 
abstraction. While defining a function, a programmer defines 
what the code block would be called, and that becomes the 
function name. Functions usually have a value that they return 
to the procedure that invokes them. See function call.

function call

A function call is a statement that invokes a certain function, 
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by satisfying the requirements for the function parameters. 
Function calls can be done as part of a procedure (if the func-
tion returns a value of a certain data type), or can be called 
by itself as a procedural abstraction (if the function does not 
return any value, or returns “void”).

recursion

Recursion is the idea of a procedure recalling the code block 
that it is a part of. For instance, a function that gives a call to 
itself in its function definition is a recursive function. For in-
stance, look at the following function definition:
	 void	factorial(int	n){

  if(n == 0){

   return 1;

  } else {

	 	 	 return	n*factorial(n-1);

  }

 }

Here, the function factorial() gives a call to itself in the function 
definition if the input parameter does not equal 0. 

classes and objects

The basis of Object Oriented Programming (OOP), classes are a 
powerful way of thinking about the parts of a program. In OOP, 
the programmer develops the program based around objects, 
which are meaningful to the programmer’s application. An ob-
ject is an instance of a class, which is the set of rules and prop-
erties that define the object. There can be multiple instances of 
an object belonging to the same class in the same program, 
with different properties but the same underlying ruleset gov-
erning them. An example of this concept was covered earlier 
in this document — that of the cover of a book. A book cover 
can be defined as a class, which has variables that define the 
look and feel of the book cover — the typeface, the positioning 
of the elements, the color, the background image etc. Different 
book covers are simply varying instances of this same class 
that have differing values for their class fields.
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explorations and 
visual studies
My initial explorations were geared towards trying to think of 
ways to use three dimensionality and spatial arrangements and 
relationships to create a three dimensional VPL. To this end, I 
started exploring three dimensional physical building systems 
to see what opportunities can be leveraged. 

With the initial intent of exploring feasibility of using a physical 
spatial VPL, I explored creating constructs with LEGO blocks. 

To move away from the cuboidal block system, I created a sys-
tem of magnetic tetrahedral and octahedral blocks that could be 
attached together to create more complex structures; the idea 
was to aggregate simpler parts into a more complex program 
structure like using classes and objects in the OOP paradigm.

The intent behind developing a magnetic snap-on system was 
two way — the magnetic snaps gave a very nice and satisfying 

fig 13. 
Exploring spatiality with 

LEGO building blocks
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physical feedback and added a nice weight to the blocks, and 
more importantly, the magnets would have allowed the use 
of magnetic switches to control current flow through conduc-
tors based on proximity. This would have been attached to an 
Arduino based board inside each tetrahedral block, which could 
communicate with a computer via wifi to deploy the built code.

I turned away from tetrahedral geometry and turned back to 
cuboidal geometry because of feedback from my peers that 
tetrahedral geometry was more complex to comprehend than 
cuboidal geometry, which is simpler and more prevalent in 
physical objects around us.

3-D models of programming: what characteristics of program-
ming lend themselves well to be situated in a three dimension-
al environment?

model 1

With a more focused mindset on thinking about programming 
constructs specifically, I turned back to exploring structures 
created with LEGO blocks. Some of the structures created this 
way seemed promising, like the one shown below.

fig 15. 
Exploring programming 
constructs with LEGO 
blocks. Here the top of the 
constructs is on the left, 
the bottom is on the right.

fig 14. 
Exploring tetrahedral 
geometry for spatial 
orientations



40

The basic idea behind this construction was to denote individ-
ual lines of code with a LEGO block, with the red dot was point-
ing to the right. Each layer of the block served as a base for a 
code block. For example, the code for the “for” loop:

 for (int i=0; i<10; i++){

	 	 statement1;

	 	 statement2;

 }

would have two layers, one for the base layer, and one layer 
having two LEGO blocks for the two statements within the code 
block for the “for” loop. 

The advantage of three dimensionality here was the ability to 
attach multiple code blocks like these together. So, one could 
define a function like this, and “bridge” it to another function 
that would invoke a call to that function. This is shown in the 
figure above where the smaller construct is calling the larger 
function at the end, which is denoted by the bridging LEGO 
block between them.

This model could be perceived as having the control flow 
along the negative y axis, control flow jumps along the x axis, 
and nesting of code along the z axis. The concept of data flow 
was all but absent, and there was nothing denoting the states 
of the constructs. I felt this model was not making use of the 
opportunities afforded by being in a three dimensional space 
— nesting could as well have been denoted by area on a two 
dimensional plane, and a lot of interesting characteristics of 
programming constructs like transience were left out.

fig 16. 
Model 1 for defining 

programming 
constructs in 3D
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model 2

From here, I tried to improve upon the drawbacks of Model 1. 
The biggest drawback from my perspective for the model was 
the absence of states and transience of the constructs, which 
play a major role in the comprehension of the concepts (Victor, 
2012). 

For the next iteration, I tried to flesh out individual functions 
and the states of variables over time. As examples, I took a vari-
able whose value was being manipulated by different mathe-
matical functions. The state of the variable was changing with 
time, and I denoted each of these states on a new layer.

The different functions that govern the value of the variable are 
defined in layers, from the bottom up. Each layer defines the 
next stage of the input data. An example is a function that is 
defined to return a value equal to 60% of the value of its argu-
ment. So, if it starts with ten blocks in the bottom layer, then it’ll 
have six in the second, three in the third, and so on (rounded to 
nearest whole number). Each layer of the function defines the 
next progressive step in this data flow from state to state. 

A visual way of defining and seeing a mathematical function is 
more intuitive for designers, because they are visual learners 
and thinkers.

In this model, functions can be seen as data flow blocks, and 
control structures like sequencing define the control flow. Both 
data flow and control flow are vaguely related to time, and are 

fig 17. 
Attempt at defining 
mathematical functions 
with LEGO building blocks
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defined on perpendicular axes — control flow along the nega-
tive y-axis, and data flow on the z-axis.

For this model, I next tried to replicate a simple if / else state-
ment, with multiple functions in one of the pipelines, as shown 
in the figure below. This was done to check the feasibility and 
adaptability of this model to more complex constructs.

I positioned the alternate paths for the conditional statement 
along the x-axis, completing the associations of characteristics 
with the spatial axes: alternate processes along x-axis, control 
flow along y-axis, and data flow along the z-axis.

In traditional text-based languages, both data flow and control 
flow share the same dimension. This inhibits the comprehen-
sion of the flow structure of the source code by a novice, who 
has had no formal training in computer programming. The third 
dimension for data flow allows the programmer to see how the 
state of a variable changes with time, and also to step through 

fig 18. 
Model 2 for defining 

programming 
constructs in 3D

fig 19. 
Defining a code snippet 

in the new model
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a certain number of steps of that function before carrying on to 
the next step in the control flow — which is the same as an im-
plementation of a jump functionality from within a code block.

This model worked well for simple constructs, but with some 
added complexity like looping structures, the model stopped 
being efficient. Since I had defined the control flow along the 
y-axis, each time a loop gets executed the elements within the 
loop would be shown again and again. This would be a misuse 
of the three-dimensional space, and would soon add up to be a 
very complex looking construct. 

model 3

For the next iteration, considering the drawback of losing the 
opportunity of using a single axis for control flow in case of 
looping structures, I situated control flow on more than one 
axes. The data flow on the z-axis now also shared an aspect 
of control flow introduced by looping structures. So, along 
with showing the state changes of a variable in a structure, 
this model would also assert that the state changes are taking 
place each time a function is called from within the structure. 
This is an important concept to grasp for programming lan-
guages, because most programs are constantly being run in 
the background, going through an infinite loop. This is how the 
languages are able to implement functionalities like event trig-
gers, where something happens based on another event like 
clicking a mouse button. The program runs continuously in the 
background like a loop, looking for changes.

fig 20. 
Model 3 for defining 
programming 
constructs in 3D
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I also abandoned showing alternate paths of execution in the 
control flow pipeline for every frame because I surmise that 
showing the state changes would suffice to show the alter-
nate outcomes over time. Showing all alternate paths in every 
frame would also clutter the visualization, and might make it 
more confusing for the designer to comprehend. 

At this point, I shifted the medium of exploration to digital be-
cause of a few reasons:

Scarcity and cost of physical media. For visualizing longer, 
more complex programs, one might run out of the physical 
blocks that are needed to construct the program. Expanding 
this toolset might have proven to be prohibitively expensive.

Within the time constraint, it would have been easier to show 
the transience of the programming constructs using digital vi-
sualizations instead of physical structures.

At the time, I was also partially thinking about Virtual Reality 
(VR) or Augmented Reality (AR) as possible mediums for this 
work, which would have been the best of all worlds — the tran-
sience afforded by digital visualizations along with the tangi-
bility offered by a physical medium. However, due to the time 
constraint I restricted my studies to be shown on the two di-
mensional desktop environment, however there are implica-
tions of this being carried forward to an immersive three di-
mensional environment like AR or VR.
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visualizations of programming constructs: how can the tran-
sient characteristic of programming constructs be used in vi-
sualizations to augment the understanding of programming 
concepts? 

Around this point in my process, I started as the teaching as-
sistant for an introductory programming course taken by Dr. 
Derek Ham at the College of Design at NC State University. This 
opportunity served an important role in the development of my 
process and ideas from here on, influenced heavily by the in-
teraction with design students learning programming and cod-
ing, as well as testing prototypes with them.

An outcome of these investigations was the visualizations of 
different programming constructs and some combinations 
of them. These were selected based on the importance of the 
comprehension of these constructs by a novice programmer, 
as well as the versatility of these constructs to different pro-
gramming languages and paradigms. I have divided my pro-
cess based on these visualizations, and talk about them in the 
following sections. The process loosely follows a chronological 
order.

variables

I started exploring possibilities with Model 3 by picking up 
from one of the explorations with the previous model, where 
I showed the states of a variable being manipulated by a 
function.

The primitive data types for a variable can broadly be divided 
into three categories; a numerical data type (eg. int, float, long, 
double etc), a character based data type (eg. char or string), 
and a boolean. Other complex data types are abstractions of 
these primary data types. However, most other abstract data 
types are abstractions of the numerical primitives, hence my 
primary interest was with exploring visualizations of numerical 
variables to make it more intuitive for the designer to interact 
with other abstract data types and constructs. 

Numerical data can be represented in several ways. One of my 
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peers described the position and speed of an element by ges-
turing in space when I was helping him with defining a mathe-
matical function for the same. This function was to describe the 
transition of the element that he was coding. This was a very 
visual way of thinking about the mathematical function, and 
provided insight on the way a designer might think. The visual-
ization branching from this is shown below for three different 
kinds of mathematical functions.

There are other ways of visualizing numerical data changing 
over time as well. Probably the most broadly accepted way of 
doing this is with the use of function plots. These plots show the 
values of the dependent variable (the “variable” in this case) as 
a function of the independent variable (in our case, time). The 

fig 21. 
Frames from an approach 
to visualizing the concept 

of a variable. The three 
variations show variables 

controlled by different 
mathematical functions: 

(a) constant 
(b) linear 

(c) sin
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value is measured in distance from a reference line, called the 
axis of the independent variable. I employed a similar concept 
for another take at this, shown below.

A short comparison of these two methods of visualizing nu-
merical data follows, visually compared in fig. 23. 

The first approach is made up of squares of different sizes 
placed one over another. The size of the square communicates 
the value of the variable that it is representing. The growth of 
the square shape happens symmetrically around its center, 
as can be seen in the comparison figure. This makes this ap-
proach unsuitable to represent numerical data which might 
contain negative numbers in certain contexts. Negative num-
bers can be visualized with a different color, like it’s done in the 

fig 22. 
Frames from another 
approach at visualizing 
the concept of a 
variable. The three 
variations show variables 
controlled by different 
mathematical functions: 
(a) constant 
(b) linear 
(c) sin
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visualization (yellow for positive and magenta for negative), 
but visually the shapes look the same. While usually this would 
not prove to be much of a problem, in cases like evaluating 
conditions (covered in the following pages), where it is import-
ant to visually calculate based on the shapes and location of 
the visualization, this method falls short.

However, when my peer defined the changing value of a vari-
able for his interaction, he gestured and made the shape in 
empty air, which is what I based this approach on. This might 
be a good approach to introduce the idea of variables to de-
signers, but for situations where a more robust visualization is 
needed, move to the second approach.

Also, one might argue that the first approach is more visually 
pleasing owing to the shape growing about a single point, giv-
ing the illusion of symmetricity, even though it is not a perfect-
ly symmetrical structure.

The second approach is modeled after mathematical graphs 
of functions. It is made up of rectangles of varying length, 
with the length communicating the value of the variable to be 
represented. Here, there is no ambiguity in the value of the 

fig 23. 
Comparing the two 

approaches to visualizing 
the same numerical 
variable, controlled 

by a sin function



49

variable, since the visualization is not completely symmetric 
about one point in each two-dimensional layer. The color cod-
ing helps with determining the orientation of the construct in 
space, and the direction of growth clearly defines if the value of 
the variable is positive or negative. This approach can be used 
for more complex applications of numbers like evaluating a 
condition, such as checking if the value of a variable is smaller 
or larger than another number.

loops

To demonstrate the concept of loops, I looked at a prevalent 
model of program execution. This model includes two func-
tions, the first function being the initialization function, which 
sets up the scene conditions, and an update function, which is 
called directly after the initialization function and continuously 
executes the lines of code contained inside its block until the 
program is stopped. 

The structure shows a static function that is called once for ini-
tialization, and another recurring function that is being drawn 
over itself iteratively. Each time the recurring function is called, 
it draws a new frame and defines a new state. These states are 
represented by the parallel rectangular places in the visual-
ization. The student has control over the speed with which the 
state is updated. The arrows show the control flow direction in 
the program (see reverse).
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fig 23. 
Visualization of the 

concept of an infinite loop, 
showing updating states



51

variable within a loop

This visualization merges the concept of a variable and an in-
finite loop together, to explain that the value of the variable 
changes with the state of the program. Each variable state is 
embedded in the corresponding function state. This visualiza-
tion also situates the more abstract concept of a variable in 
a programming context. The arrows denoting the control flow 
have been removed because this concept is introduced after 
the loop where the arrows help establish the way that the con-
trol flow is shown in the visualizations (see reverse).
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fig 24. 
Visualizing a variable 

going through different 
states as the program 

is executed, embedded 
in the loop construct 

denoting change of states
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conditional statements - if()

The if() statement executes a block of code if the condition pa-
rameter is met. This condition is usually a verification of a re-
lationship between two variables. For instance, it might check 
if a numerical variable is equal to or less than another number 
or not. The condition can also check for the equivalence of two 
text strings made up of characters of the alphabet.

My approach included breaking down the conditional checks 
into different possibilities, and tackle them individually on a 
two dimensional plane. 

Here I show the visuals for the different relational checks be-
tween ‘a’ and ‘b’, where they are both numerical variables. The 
if() statement will be of the form 
	 if	(a	OPERATOR	b)

where the OPERATOR can be checking for equality (==), in-
equality (!=), greater than (>) or less than (<). The relationships 
between ‘a’ and ‘b’ can be visualized the following way, using 
the first approach of visualizing variables (fig 25).

(a)                                                   (b)

(c)                                                 (d)

This approach of visualizing numerical data for checking val-
ues is problematic if the variable can take on both positive and 

fig 25. 
Visualizing relationships 
between numerical 
variables using the first 
visualization approach of 
variables. The different 
parts are attempts at 
visualizing checks for
(a) equality
(b) inequality
(c) greater than
(d) less than
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negative numerical values. To illustrate my point, consider the 
following conditional evaluation:

	 if	(a	<	10){}

Here, the condition will be met if that value of ‘a’ is less than 10. 
This will be true for any negative value of ‘a’. For cases where 
the value of ‘a’ lies between -10 and 10, the size of the square 
remains smaller than the bounding box of size 10 against 
which the check is being performed. However, once the value 
dips below -10, the boundary of the variable a being visualized 
will overflow from the boundary of the bounding box, but the 
condition will still evaluate to be true. This is demonstrated in 
fig 26.

(a)                                                 (b)

This is a problem. It can be worked around by creating anoth-
er kind of visualization as shown in (b), but this would not be 
ideal since I was aiming for visual calculation — how can one 
tell from looking at a visual what the relation between the two 
variables is? The evaluation of the conditional statement can 
be decided from that calculation. With negative values whose 
absolute value is greater than the bounding box, this visual 
calculation fails, even though it can be visualized with technical 
correctness with an approach like shown in (b). 

An alternative approach to visualizing the conditional relation 
	 (a	OPERATOR	b)

where ‘a’ and ‘b’ are numerical variables and the operator is a 
relational operator is shown below. This is based on the second 

fig 26. 
(a) The check evaluating 
to true even though the 

variable looks bigger than 
bounding box, and  

(b) a workaround 
visualization 



55

approach of visualizing numerical variables.

(a)                                                (b) 

(c)                                                (d) 

In this case, it can be clearly seen that the problem faced with 
the previous approach to visualizing the relationship is no lon-
ger present. Since these visualizations can be thought of as ly-
ing along the number line, each value has a distinct position in 
space, which does not depend on the variable’s absolute value 
(that is, a positive and negative number of the same face value 
will lie in different positions with this approach).

Another possibility for the parameter of a conditional state-
ment is checking equivalence of two different strings, made up 
of characters of the alphabet. So it will be of the form 
	 if	(a	OPERATOR	b){}

where ‘a’ and ‘b’ are string variables, and the operator is the 
one that is used to check equivalence of strings (differs in differ-
ent languages, but some accept the “==” relational operator). 
In the following visualization, I compare two strings, “apple” 
and “orange”, against the string “apple”. The first comparison is 

fig 26. 
Visualizing relationships 
between numerical 
variables using the second 
visualization approach of 
variables. The different 
parts are attempts at 
visualizing checks for
(a) equality
(b) inequality
(c) greater than
(d) less than

fig 27. 
Comparing two strings 
of characters
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evaluated to be true, the other false. 

In the case of the strings being the same, I decided to keep 
some distance between the outlines of the characters, but the 
distance is kept within a limit such that there is always enough 
overlap to follow the full text. Otherwise, the two strings would 
completely overlap and the user may not realize that two 
strings are being compared (fig 28).

conditional loop - for()

The for() loop can be seen as a combination of previous con-
structs that I have looked at — the infinite loop and the condi-
tional statement. The for() loop is designed to run for a limited 
number of times, as long as a certain condition is met. It can be 
thought of as an infinite loop, but one whose code is situated 
within an if() conditional statement so that these statements 
only get executed when the if() conditional is met. The code 
for the for() loop, where the programmer wants to execute two 
statements, statement1 and statement2, looks like this:
	 for	(<initialization>;	<condition>;	<update	statement>)	{

	 	 statement1;

	 	 statement2;

 }

The control flow of the for() loop can be defined with an if() 
statement like this:
	 <initialization>;

	 loopStart:

 if (<condition>) {

	 	 statement1;

	 	 statement2;

	 	 <update	statement>;

	 	 GOTO	loopStart;

 }  

fig 28. 
No distinction between 

outlines if the strings 
match, causing 

confusion for the user
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The GOTO statement creates a loop back to before the condi-
tion is checked (the state defined by loopStart in the program), 
and if the condition fails then the statements within the if() 
code block are not executed and the control flow skips over the 
if() block. I used this analogy to define the for() loop visually, 
seen below.

With this visualization, the actual code that is being executed 
has also been introduced at the top for the student to see and 
manipulate. Manipulation of the code results in the structure of 
the visualized code changing. This adds a kinesthetic learning 
to the visual-spatial learning attribute. 

For manipulating the code, I introduced highlighting relevant 
parts of the program based on where the user is pointing with 
her mouse pointer. On hovering over a variable statement, the 
corresponding visual construct of the variable is highlighted. 

fig 29.
This series of visualizations 
show the for loop at 
the initialization and at 
the end. There are now 
more than one (four) 
variables being shown 
in the same construct 
— “constantSize”, 
“linearSize”, “variableSize”, 
and “finalSize”.
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This creates a correlation in the student’s mind about which 
line of code is being visualized where.

While a variable is selected and is highlighted, its value can be 
changed to reflect in the code as well as the visualization of the 
construct.

With multiple variables situated within the same code block, 
the three-dimensional spatial-visual aspect of the visualization 
show one of its strong points. The visual construct is made up 
of simple two dimensional visualizations that make it easy for 
the user to see and comprehend the current state of the vari-
ables in the program as well as the program as a whole. 

fig 30.
This figure shows the 
variable “linearSize” 

being highlighted in the 
code by the user. This 

highlights the variable in 
the construct visualization 

and helps establish a 
connection between the 

written code and the 
visualized constructs.

fig 31.
This figure shows the 
updated value of the 

variable “linearSize” due 
to its value being changed 

in the code. The variable 
“finalSize” is dependent 

on “linearSize”, hence the 
value of that variable is 
updated as well. These 

updated values also update 
their visualizations. 
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However, since these are three dimensional visualizations con-
structed of the state changes, it is easy to change the angle of 
viewing to gain a completely different perspective on the pro-
gram. This ties into the different values on the different axes 
in Model 3 of programming that was developed for this thesis 
— viewing the construct from different angles will show dif-
ferent characteristics of the program being executed, and this 
is one of the most powerful advantages of visualizing in three 
dimensions.

fig 32.
Information about the 
current state of the program 
and its variables can be 
seen when viewing straight 
down at the model. Here 
you see the “control flow” 
and the “data value” axes 
of Model 3 of programming.

fig 33.
This shows how changing 
the orientation of the model 
changes what kind of 
information can be gained 
from this visualization. In 
this view, you mainly see 
the “data flow / control 
flow” and the “data value” 
axes, showing information 
about how the values of 
variables change with time 
and affect each other. So 
one can visually see the 
relationship between the 
“finalSize” variable and 
all the other variables 
that it is dependent on.
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the learning tool prototype: how can the layout of elements 
help designers make a connection in the train of thought from 
their designed system to the on-screen output?

Informed by my visual studies and explorations, I designed a 
simple supplemental tool for an introductory programming 
course. The home page is divided into three sections. 

The sidebar on the left shows an intro text which tells the stu-
dent what she can do. 

The main section in the middle shows a list of lessons about 
different programming constructs. Each construct has an icon 
that is a short repeated animation that mimics the nature of 
the construct. This iconography is used consistently through-
out the experience to keep the student’s experience consistent. 
This iconography is also used by the student to make a connec-
tion of her mental model with the construct. The main section 
also has some text about what the student would learn from 
understanding this construct, and what kinds of situations 
while writing code it might help her. 

The third section on the right shows a list of examples that use 
these constructs. There are a limited number of examples, and 
some of these use multiple constructs. The examples shown 
beside each construct are ones that use that particular con-
struct. The list of examples for each construct is not mutually 

fig 34.
The home page of the 

visualization tool for 
design students
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exclusive from others.

For example, a set of relationships between the six lessons and 
a set of six constructs can be shown as a matrix, where a cell is 
filled if there exists a connection between that example (num-
bers) and the corresponding lesson (alphabet).

Here, for instance, example 1 uses constructs a (variables) and 
c (conditional statements), and will hence show up in the exam-
ple list of both the constructs. The relationships between these 
elements is also shown when the student hovers over any ele-
ment — hovering over a lesson will highlight all examples that 
use that construct, which will help the student also think about 
which constructs are generally used together. Hovering over an 

fig 35.
This is a possible 
relationship matrix for a list 
of programming constructs 
and examples. Some 
constructs are covered 
by multiple examples, 
and some examples use 
multiple constructs.

fig 36.
Each lesson in the list 
has all the examples that 
cover it beside it. When a 
lesson is hovered over, all 
these examples are also 
highlighted to give the user 
a sense of which constructs 
can be used together to 
produce what effect.
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example will highlight the lessons for all the constructs that are 
used in that construct. 

The examples in the example list for each construct is sorted 
according to the example’s perceived difficulty and complexity. 
A basic algorithm that I am using to determine the difficulty 
level for each example is calculating the sum of the face values 
of each construct that is used in that example, where the face 
value of a lesson ranges from 1 to 6, with 1 being the sim-
plest (variables) and 6 being the hardest (classes and objects). 
For example, for the set of relationships shown in the matrix 
above, the difficulty rating for the six elements are 4, 6, 7, 10, 7, 
and 7.

Clicking one of the constructs takes the student to the visual-
ization of that construct. The sidebar now has a list of all the 

fig 37.
Any example in the example 

list might be using more 
than one programming 
constructs to get to its 

output. Hovering over an 
example will highlight all 

the constructs that are 
used by that example so 

the user knows how much 
background knowledge 

she might need to 
comprehend the example.

fig 38.
The sidebar shows the 

example that the student 
can jump to, that are 

connected to the current 
construct being explored
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constructs, that the designer can jump to. Here the main screen 
opens a sandbox interface, where the designer sees a code 
snippet that only shows the selected construct, out of context 
of a complete functioning program. On the right end the de-
signer sees the examples that use this construct so she can 
gain a contextual understanding of the construct’s concepts 
and see its applications. 

In the sandbox interface the student can manipulate the code 
to affect the visuals, and hovering over any line of code high-
lights that line as well as its corresponding part in the visualiza-
tion. This is the abstract conceptualization in Kolb’s experiential 
learning cycle. With a line highlighted, the student can then 
manipulate the values of the constants, if any, that are used to 
define a variable. These values are reflected in the visualization. 

fig 39.
Sandbox mode to explore 
programming constructs
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These activities engage the student’s visual-spatial intelligence. 
The student may also move the construct around to view it from 
different perspectives, forming new meanings from them. The 
act of manipulating the camera to view the thing from different 
angles, as well as the play involved with manipulating the ele-
ments and see them reflected, engage the student’s kinesthetic 
intelligence as well, and put the students in the active experi-
mentation phase of the learning cycle.

On choosing to view an example of the selected construct, the 
student is taken to the code for the example, and its visualiza-
tion. The example mode is different from the sandbox mode in 
that the code is complete, and not just a snippet. The example 
mode also has an output screen, where the student can see the 
desired output of the example being executed. Just like with 
the constructs, the student can still manipulate the elements 
of the example — make changes to values of the variables, 
change the orientation of the visualized constructs. The major 
differences in the thought process this time are:

•	 Since the code is complete, the code complexity is inher-
ently greater than that of individual constructs in the sand-
box mode.

•	 This time the student can relate her experiences to a pro-
gram output, which helps her make a connection between 
her: 

fig 40.
Example mode to explore 

programming constructs and 
view applications of these 

programming constructs 
in the output window
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1. computational thinking, by guessing how the pro-
gram might be executed, and inferring from what 
she sees — visually calculating the scene in front of 
her,

2. programming, by looking at the functioning of the 
program’s algorithm visualized as three-dimension-
al constructs,

3. coding, by looking at the code, making connection 
with the program visualization, and manipulating 
and seeing what happens,

4. computation, by seeing the output and how it might 
be executed by the code.
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conclusions
I looked at different characteristics of a computer program and 
explored ways of visualizing them in three-dimensional space 
through visual studies. I also looked at how individual ele-
ments in the visualizations may help the designer connect the 
different phases of the programming process to one another, 
something that is missing from programming languages and 
environments that currently exist.

These studies and the tool were intended to help a designer 
understand programming concepts, and get familiar with the 
coding process as well as enable her to understand existing 
code. The intent was not to make an application developer out 
of a designer — a designer and application developer serve 
very different roles in an interdisciplinary team, and the intent 
was to expand the skillset of a designer in order to make her 
more efficient as a team member. This is done by enabling the 
designer to read existing code, and create short prototypes to 
communicate her intent to developers.

The visualization of transience in the constructs helps the de-
signer understand the concept of always-changing states of a 
program, and how that can affect other variables when utilized 
properly.

By virtue of being visualizations, my studies are very visual in 
nature, and are constructed in a spatial manner. This engages 
the designer’s visual-spatial intelligence that Gardner defined. 
The ability to manipulate the constructed three-dimension-
al model of the constructs and look at it from different per-
spectives, as well as make changes to what is shown, engages 
her kinesthetic intelligence as well. Since this is based around 
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programming and thinking about the working of constructs, 
the logical-mathematical intelligence is used as well. However, 
Gardner says that for a learning experience to be effective, all 
intelligences that he has defined must be tapped into. While 
my visualizations primarily use the three intelligences — visu-
al, kinesthetic, and logical — and don’t use all seven, I feel that 
it is a step forward for a designer from a primarily text-based 
programming environment which primarily engages the logi-
cal-mathematical intelligence.

For the visualization of variables, I have primarily focused on 
numerical data types. While the numerical data types cover the 
most ground from a programming standpoint, text plays a very 
important part in the design of systems as well. However, since 
the main intent of these visualizations was to enable computa-
tional and programmatic thinking on the part of the designer, 
I focused on making it easier to understand and model inter-
actions and behaviours than to focus on the form of the built 
substance. As George Stiny writes, recognizing that a system 
is made up of variables that can be switched out for another is 
paramount (Stiny, 2006). Once that is understood, the designer 
can see past the thing and comprehend the system itself.

For the immediate future, I want to sketch out more constructs, 
including functions, classes, and objects. I also want to add 
more examples to the toolset to view existing code visualized, 
to test the robustness of the model I’m using to lay out the 
visualizations (Model 3 from visual studies — 3-D models of 
programming) for more complex programs.

The initial feedback about these visualizations as a means to 
understand concepts has been positive. However, I have only 
asked students enrolled in the class I was assisting with — I 
want to test the visualizations with a broader audience to get a 
more general feedback. 

I have not added the ability to write code from scratch in the 
tool that I envisioned, because I wanted to focus on explor-
ing systems that help designers understand programming and 
existing written code, rather than write their own code. For 
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writing code, a designer using my system would be deferred to 
any programming language of their choice and use any means 
to write and test their code. However, leaving the process of 
writing code out also led me to leave out an important step in 
the process that writing code is a part of — the act of debug-
ging. Debugging is a great way to learn coding, as well as to 
test oneself, as you learn from your mistakes. This connects to 
Papert’s theory of constructionism.

I can also see the designed tool being an online platform on its 
own, or as part of an existing online learning system, where 
the instruction from an expert can be given via a video. This 
would open up the tool to a wider audience, and remove the 
restriction of it being situated in a classroom context. However, 
with such a system it would be better to include the ability to 
write your own code as well, while visualizing what you have 
written.

Further down the road, I want to use the knowledge I have 
gained from these explorations to design a Visual Programming 
Language. I have touched on several different opportunities 
that I was not able to explore to their full potential. Possibilities 
include continuing exploring physical / tangible interactions, 
and to explore the territory of these tangible interactions in 
Virtual Reality as well.

Another possibility I want to explore is the effect of sharing on 
learning. One of the reasons of Scratch’s popularity is the abili-
ty it gives its users to share their code with the community, and 
pick up others’ source code and build from there. The process 
of programming that I suggest in this thesis is suitable on a per-
sonal level, but in a community of coders, sharing the code and 
showing what you’ve made, as well as getting inspired from 
others’ creations, is an important part of the learning cycle. 
This is a level on the programming cycle which goes outside 
the personal loop and connects to other people’s processes.
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review of literature
seymour papert

Seymour Papert developed the theory of constructionism, 
which was derived from Piaget’s theory of constructivism. Two 
of the key ideas here are that children build their own intellec-
tual structures, and that they build on top of what they already 
know - expanding on the intellectual structures that they have 
built. 

The idea of everybody building their own intellectual struc-
tures supports Gardner’s theory of multiple intelligences. 
Everybody has their own way of formulating a cognitive model 
of a circumstance in their mind, and Gardner postulates that 
this might be because of the different learning modalities that 
people possess. 

The idea of learning from exploring and building on top of the 
intellectual structures that others have built is very strongly 
reflected in some visual programming languages like Scratch, 
which is based on a community of coders where they can 
“Remix” each other’s code base to create something of their 
own. I use this principle in my tool with the examples section, 
where the designer can see a pre-built visual construct of a 
syntactically correct program, and infer from seeing and ma-
nipulating the program.

marvin minsky - society of mind

Minsky explains a theory of the human mind where he breaks 
the brain down into little blocks, which he calls agents. These 
agents are mindless on their own, but when they come togeth-
er, interact with each other, and form a society, they create an 
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intelligent mind. These agents can be organized into var-
ious hierarchical structures, with those agents at the top 
commanding (i.e., turning on and off) those below, those 
at the bottom often muscle-motor agents. 

While thinking about a programming language, I used this 
concept when trying to understand the relationships be-
tween the individual components of the program that the 
user interfaces with. Even though the individual compo-
nents might not make much sense by themselves, they cre-
ate a functioning program when brought together and in a 
particular fashion such that proper interactions are set up 
between these program-agents. This is mostly applicable 
to the Object Oriented Programming paradigm, though.
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